
Multi-step Translation from C to
Rust using Static Analysis

Tianyang Zhou
University of Illinois Urbana‑Champaign

May 05, 2025

1

About Me
● 2nd‑year PhD student, CS @ UIUC

○ Advisers: Varun Chandrasekaran & Kirill Levchenko
● Research: System security → ML for software engineering → LLM‑based C to

Rust translation
● Security background: memory‑safety exploits, fuzzing, WebAssembly,

container isolation

2

Why Translate C to Rust

3

Why Translate C to Rust

4

Why Translate C to Rust

5

Zero‑cost memory safety

Ownership, Borrow-Checker

No perf loss

Why Translate C to Rust

6

Zero‑cost memory safety

Ownership, Borrow-Checker

No perf loss

Manual write is hard → Need automation

Translation Challenges

7

Semantics Idiomaticity

● Pointer vs Reference
● Lifetime
● Ownership …

● C types to Rust types
● Unsafe remove
● Write in the “Rust way”

● Hard to prove
● Too strict or too relax

Verification

C vs Rust: Key Differences

C Rust

Memory Mgmt. malloc/free Ownership + Borrow checker

Null safety NULL, unchecked Option<T>

Pointers Raw pointers only Safe refs, Box, smart ptrs; raw
pointer only under unsafe gates

Concurrency Data‑race prone Compile‑time race freedom, no
data-race possible in safe Rust

Error handling Return error code Result<T,E> pattern matching

Type conversion Implicit + explicit type conversions Explicit only

8

Idiomatic Rust: Why It’s Important
● What is idiomatic Rust

○ Idiomatic Rust ≠ Compiles‑in‑Rust
○ Reads like native Rust: expressive types, pattern matching, iterators
○ unsafe kept minimal & audited (ideally 0%)
○ Follows community lints (rust‑clippy) and module conventions

● Why it’s important:
○ Memory safety are only guaranteed by compiler in unsafe-free blocks
○ Critical for long‑term maintainability, contributor onboarding

9

Code Examples: Unidiomatic vs Idiomatic Rust

10

Unidiomatic Rust can not ensure the memory safety, but idiomatic Rust can!

Non‑LLM Baseline: C2Rust
● Pros:

○ Robust AST‑level converter; handles full C99
○ Always compiles
○ Functional equivalent by design

● Cons:
○ Produces verbose, unreadable code littered with unsafe (≈ 100 % unsafe‑token fraction)

■ Not enough memory safety provided
○ Strips comments/macros: unmaintainable

● C2Rust is designed as the starting point for manual code translation

11

Code Example of C2Rust Output

C code

C2Rust Translated code

12

Other Non-LLM Approaches
● Baseline: Most build on C2Rust for initial translation
● Crown (ICCAV ’23): Ownership analysis to reduce unsafe pointer use
● Rule/Heuristic tools (Hong & Ryu ’24; Ling et al. ’22): Target specific idioms

(e.g., improve output params, handle null ptr)
● All of these approaches have significant defects:

○ Still ≈ 100 % unsafe‑token fraction – No safety guarantee
○ Code still mostly unreadable

13

LLM Approaches
Approach Idea/Pros Cons

C2SaferRust (’25) LLM‐polishes C2Rust output;
Significantly reduce unsafe

Still tied to C2Rust
(unmaintainable);
moderate unsafe remains;

Syzygy (’24) Uses runtime traces to analyze
pointers + guide LLM

Dynamic analysis can be
inaccurate for low-coverage tests

Fluorine (’24) Iterative prompt‑repair with
compile errors;
Verify by fuzzing and data type
serialization;

Requires per-function fuzzing
specs;
50% failures due to
serialization/type mismatch;

Vert (’24) Fuzz + SymEx for equivalence Scales to small programs only;
Unable to support complex code
features

14

Consolidate All of The Cons From Prior Work
● Heavy reliance on unsafe ⇒ safety not guaranteed
● Loss of readability/idiomaticity
● Limited support for complex code features

○ e.g. function pointers, complex data structures
● Verification unscalable

○ Fuzzing testing: requires hand-written input specs per function
○ Symbolic execution: too strict, may introduce false positives (functional equivalence but

semantic mismatches)

15

SACTOR (Structure‑Aware C‑to‑Rust Translator)
Key ideas (high‑level):

● Static‑analysis‑guided prompts
○ Prompt the LLM with concrete pointer + dependency information

● Syntactic‑first (unidiomatic translation), semantic‑second (idiomatic translation)
○ Unidiomatic translation: preserve behavior
○ Idiomatic translation: strip unsafe for idioms

● Verification by end-to-end tests
○ Link translated back into C tests via FFI harnesses

● Result: Keeps the high correctness with better idiomaticity and better adaptability

16

SACTOR Methodology
1. Task division (libclang): dependency‑ordered fragments

○ Obtain dependency graph of functions and data
structures

2. Step 1 – Unidiomatic translation
○ LLMs translates with C‑like semantics (allows

unsafe, allows libc functions)
3. Step 2 – Idiomatic refinement

○ Use Crown as pointer analyzer, extract pointer
metadata (fatness, ownership, mutability)

○ Prompt LLM with pointer metadata
4. Verification loop by end-to-end tests

○ Compile + FFI end‑to‑end tests until pass (≤ 6 tries)
○ Feedback with compilation errors or test error

information (input+output)

17

How Static Analysis Helps Translation

● C parser (based on libclang): extract types, globals, function signatures,
dependency graph

○ Extract translation order
○ Adding dependency into prompt as extra information

● Crown: pointer ownership/fatness: suggest &T, Box<T> vs raw pointers
○ Provide pointer analyze information to LLM

● Rust procedure macro: Collect input/output of target function when test failed
○ Inject debug code into target translated function
○ Collect debug information + valgrind (memory checker) output

18

Verification Strategy: How We Use FFI to Run Tests
● Unidiomatic phase:

○ Compile Rust function as a shared library
○ Directly link back into C via shared library, reuse

existing end-to-end tests
● Idiomatic phase:

○ Use LLM to generate test harness: Converts C ↔
Rust structs, function signatures

○ Link translated function together with harness back
into C

● Feedback:
○ compiler errors & logged I/O collected from injected

debugging code fed into next LLM attempt

19

Example Code Translation Process: atoi

20

Example Code Translation Process: atoi

21

Experiment Setup
● Datasets

○ 100 TransCoder‑IR programs
○ 100 CodeNet programs
○ 2 real projects (AVL tree, urlparser)

● LLMs
○ GPT‑4o, Claude 3.5, Gemini 2.0, Llama 3.3‑70B, DeepSeek‑R1
○ Evaluated on 01/2025
○ Gemini 2.5 pro

● Metrics
○ Success Rate (code can compile and pass tests)
○ Idiomaticity

■ Clippy alerts by cargo clippy (Rust linter)
■ unsafe fraction

○ tokens & queries cost

22

Experiment Result: Success Rate

● TransCoder‑IR: DeepSeek‑R1 93 %, GPT‑4o 78%, Gemini 2.0 75%, Llama 64%, Claude 54%, Gemini 2.5 pro 84%
● CodeNet: GPT‑4o / Claude / DeepSeek‑R1 84%, Gemini 2.0 77%, Llama 76%, Gemini 2.5 pro 81%

23

Experiment Result: Cost Across Different LLMs

● GPT‑4o & Gemini 2.0 are most efficient: ~2.3–2.7 k tokens & 2–4 queries per program.
● DeepSeek‑R1 although the best, reasoning at a 5-7x token overhead.
● Gemini 2.5 pro consumes 10797.34, 5877.65 tokens per dataset; 5.45, 3.05 queries per dataset.

○ Around 2-3x overhead than other models.
24

Experiment Result: Idiomaticity (Clippy Alerts)

● Only evaluated on GPT-4o
● SACTOR cuts warnings by 90 % relative to C2Rust; beats Vert
● SACTOR unidiomatic beats C2SaferRust 25

Experiment Result: Idiomaticity (Unsafe Fraction)

● UF: How many fraction of programs are free of unsafe; AU: Average unsafe fraction across all programs
● unsafe fraction: SACTOR 0 % vs C2Rust 100 %, Crown 100 %, C2SaferRust 11 %

26

Failure Analysis: TransCoder-IR

27

● Main failures: string conversion (Claude 3.5 most), array layout, unsafe C calls.
● DeepSeek-R1 reduces errors via reasoning before code.

Failure Analysis: CodeNet

28

● Common issues: format strings, CLI parsing, type mismatches.
● All models struggle with precise C I/O semantics.

Case study 1: avl_tree
● A C implementation of AVL tree
● SACTOR can obtain complete

unidiomatic Rust translation
● Failed to get idiomatic translation

○ function pointer not supported

29

Case study 2: URL parser
● SACTOR can obtain complete

unidiomatic Rust translation
● Obainted 10/23 total idiomatic

functions translation

30

Conclusion & Future work
● SACTOR:

○ Static‑analysis + two‑phase prompting → 78–93 % correct, better idiomaticity
● Key takeaways:

○ External analysis → better capability
○ Re‑using test suites via FFI → better adaptability
○ Two phase translation: Decouples syntax vs semantics → extra flexibility

● Next:
○ Support richer code features
○ Improve e2e test coverage
○ Cost‑efficient prompting under test-time scaling
○ Broader evaluation

31
Tianyang Zhou, tz64@illinois.edu/qsdrqs@gmail.com, Website: qsdrqs.github.io

mailto:tz64@illinois.edu
mailto:qsdrqs@gmail.com

